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problem description & motivation

- faced by Emergency Service Providers (ESPs)

- manage fleet of ambulances |

- reach patients in case of emengency asap Q
- fundamental decisions

- ambulance location where?

- dispatching which?

 reinsertion where next?

- relocate where else?
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Q1: where to locate ambulances?

- optimize coverage
- areas/patients reachable

« within given time limit
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Q1: where to locate ambulances?

- using real street network
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Q1: where to locate ambulances?

- using time dependent travelling times
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Q2: which ambulance shall be sent?

- dispatching
- immediate response time!

» future response times?
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Q3: where to send ambulance next?

- reinsertion
- determine next waiting location
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Q4: send ambulances somewhere else?

- relocation
- determine new waiting location

« future response times!
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dispatching & reinsertion process

start of service
(at patient)

arrival of assign start of service end of service start of service end of service arrival
request vehicle (at patient) (at patient) (at hospital) (at hospital) (at waiting location)
r---_—_>
/
/

travel time service travel time service travel time
time time time time time
(to patient) (at patient) (to hospital) (at hospital) (to waiting location)

dispatch
time

travel time
time

(to patient)
response

time
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basic notation
- states

- capture current situation (ambulances + requests) S; (R,,Dy)
- decisions

- made dynamically over time X,

- immediate contribution C(S,x,)

- decisions have a downstream impact on future
- need estimate for value of being in a state V, (S,)

sources of randomness

* requests, durations W,

dynamic evolution
St+1 = SM(St,CCt,WtH)
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optimization

- myopic policy
- optimize wrt immediate contribution

‘/t(St) = IIQl:lI'l C(St, CL’t)

- optimize underlying stochastic problem

immediate contribution

/- expected future contribution
Vi(S) = min( C(Sty@e) { E{ Vius (St (Sl iWisn)) )

TN

value of next state current state decision random input
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state (in more detail)

- resources (ambulances)

- attribute vector a; € A

- resource state vector Ry = (Ria)aca
- demand (requests)

- attribute vector b, € B

- demand state vector Dy = (Dyw)ven
- state St = (Ry, Dy)
- decision

- elementary decisions de D

» decision variable
Lt = (CUtad)aeA,deD
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states (example) t=10:30am

* resource state
- idle ambulances @
current location

available since
- busy ambulances &%
next location

available next 3

- demand state

 location
 arrival time

 priority
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model (constraints)

- flow conservation on request

at most one idle ambulance can be
dispatched to any request Z Tiad < Dy, Vd € pP
ac At
- for ambulances

only idle ambulances can be

dispatched Z Tiad < Ria Ya € Aj
deDP
ambulances just becoming idle have .
to be dispatched or relocated Z Tiad = Ria Va € Afr
deDPUDR

status of busy ambulances cannot be
changed Z Tiaqa =0 Va e A?
deD

1st International Workshop on Planning of Emergency Services :: Amsterdam :: Dr. Verena Schmid :: June 25-27, 2014 16 of 32



&%)

literature overview solution approach conclusio

problem description & motivation data & results

mathematical problem formulation

1st International Workshop on Planning of Emergency Services :: Amsterdam :: Dr. Verena Schmid :: June 25-27, 2014 17 of 32



dynamic programming

- stochastic optimization problem

Vi(Sy) = C(Staxt)["‘E{jm+lq5t+1(8t’wtawt+1)) 1)

- basic idea
° recursive

- step backward in time

- curses of dimensionality

- state vector S, grows very quickly Al x |B|
- size of outcome space of random variable W, Al x |B]
- size of decision vector x; Al x |D|
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approximate dynamic programming (ADP)

- stochastic optimization problem
= migy( () + BT (S (5P, b)) 1)

- basic idea
- make decisions based on approximation of value function
- step forward in time (sample what might happen)
- iteratively. using a fresh set of sample realizations

- update value function approximation

VISt = (1 — an—1) V"7 (S}') + a1 0]
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data

- real data
- street network: city of Vienna (1.7 mio inhabitants, 41.5 hectare)
- fleet of 14 ambulance vehicles, 16 locations

> requests
» average # of 89.24 emergencies per day
« volume itself highly dependent on time of day

« exponentially distributed interarrival times
» spatial poisson process based on distribution of origins
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road network & waiting locations
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interarrival times
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origin & destination of requests

-
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experiment setup

- experiment setup

- training phase (10 iterations)
« fixed step size a=0.2
 temporal (spatial) aggregation parameter ¢t = ¢s =4
» sampled data from estimated distributions

- 5 independent test runs
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avg. response time (min)

first training: 10° iterations

- 2 decisions
» where to relocate?
- benchmark policies
- relocate to home location 4.51 min(current strategy)

- relocate to closest location 4.61 min(naive strategy)

» relocate to random location 5.12 min

- adp 4.05 min
o b o
4.75 -—-—— current

-—-—- naive
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relax this assumption

- 2 decisions
» which vehicle to dispatch
* where to relocate?
- benchmark policy
- relocate to home location

4.60 min(current strategy)

- adp

* send closest 4.05 min

- send any 4.01 min

-——- current
adp
——————————————————————————————————————————————————————————————————— adp - send any
i e
10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

1st International Workshop on Planning of Emergency Services :: Amsterdam :: Dr. Verena Schmid :: June 25-27, 2014

27 of 32



response times over course of day

average response time (over day)
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conclusion

- contribution
- formulated a dynamic model for the ambulance dispatching and
relocation model

- solved using ADP
- outperformed benchmark policies (random/naive/current)

- pays off to deviate from current dispatching rules (13%)
 consider other vehicles (not just closest one) for dispatching
* relocate vehicles adequately after finishing service
* relocate vehicles empty to cope with current situation
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decisions.
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1. Introduction and related work

Emergency service providers are supposed to locate ambu-
lances such that in case of emergency patients can be reached in
a time-efficient manner. Two fundamental decisions and choices
need to be made real-time. First of all immediately after a request
emerges an appropriate vehicle needs to be dispatched and send to
the requests’ site. Ambulances, when idle, are located at designated
waiting sites. Hence after having served a request the vehicle needs
to be relocated (i.e. its next waiting site has to be chosen). For a
close match to reality, time-dependent information for both travel-
ing times and the request volume will be considered explicitly. We

cardiac and circulatory arrest the chances for a resuscitation to
be successful decrease dramatically. Typically chances decrease
by 10% per minute as long as the patient is not treated accordingly.
Providing a quick response to emergency requests is crucial for the
patients’ state of health.

The contribution of this paper is threefold.

(i) We propose a stochastic dynamic model for the ambulance
relocation and dispatching problem, which will be solved
by means of ADP.

(ii) In order to get a preferably accurate model of reality we will
explicitly take into account time-dependent information and

1st International Workshop on Planning of Emergency Services :: Amsterdam :: Dr. Verena Schmid :: June 25-27, 2014

310f 32



VY u =

Thank yoy for your attention!

A

Dr. Verena Schmid

Europa Universitat Viadrina Frankfurt (Oder) | Information & Operations Management (I0M)
Lehrstuhl fiir Betriebswirtschaftslehre, insbesondere Supply Chain Management

+49 335 5534 2254 | [=] vschmid@europa-uni.de

‘D h://www.wiwi.europa-uni.de/de/lehrstuhl/iom/scm/index.html

1st International Workshop on Planning of Emergency Services :: Amsterdam :: Dr. Verena Schmid :: June 25-27, 2014 32 of 32



